Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
IUCrJ ; 8(Pt 3): 395-407, 2021 May 01.
Article in English | MEDLINE | ID: covidwho-1218066

ABSTRACT

As part of the global mobilization to combat the present pandemic, almost 100 000 COVID-19-related papers have been published and nearly a thousand models of macromolecules encoded by SARS-CoV-2 have been deposited in the Protein Data Bank within less than a year. The avalanche of new structural data has given rise to multiple resources dedicated to assessing the correctness and quality of structural data and models. Here, an approach to evaluate the massive amounts of such data using the resource https://covid19.bioreproducibility.org is described, which offers a template that could be used in large-scale initiatives undertaken in response to future biomedical crises. Broader use of the described methodology could considerably curtail information noise and significantly improve the reproducibility of biomedical research.

2.
Nucl Instrum Methods Phys Res B ; 489: 30-40, 2021 Feb 15.
Article in English | MEDLINE | ID: covidwho-1009775

ABSTRACT

Intense X-rays available at powerful synchrotron beamlines provide macromolecular crystallographers with an incomparable tool for investigating biological phenomena on an atomic scale. The resulting insights into the mechanism's underlying biological processes have played an essential role and shaped biomedical sciences during the last 30 years, considered the "golden age" of structural biology. In this review, we analyze selected aspects of the impact of synchrotron radiation on structural biology. Synchrotron beamlines have been used to determine over 70% of all macromolecular structures deposited into the Protein Data Bank (PDB). These structures were deposited by over 13,000 different research groups. Interestingly, despite the impressive advances in synchrotron technologies, the median resolution of macromolecular structures determined using synchrotrons has remained constant throughout the last 30 years, at about 2 Å. Similarly, the median times from the data collection to the deposition and release have not changed significantly. We describe challenges to reproducibility related to recording all relevant data and metadata during the synchrotron experiments, including diffraction images. Finally, we discuss some of the recent opinions suggesting a diminishing importance of X-ray crystallography due to impressive advances in Cryo-EM and theoretical modeling. We believe that synchrotrons of the future will increasingly evolve towards a life science center model, where X-ray crystallography, Cryo-EM, and other experimental and computational resources and knowledge are encompassed within a versatile research facility. The recent response of crystallographers to the COVID-19 pandemic suggests that X-ray crystallography conducted at synchrotron beamlines will continue to play an essential role in structural biology and drug discovery for years to come.

3.
Protein Sci ; 30(1): 115-124, 2021 01.
Article in English | MEDLINE | ID: covidwho-796087

ABSTRACT

The COVID-19 pandemic has triggered numerous scientific activities aimed at understanding the SARS-CoV-2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X-ray, cryo-EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To help biomedical researchers, who may not necessarily be experts in structural biology, navigate through the flood of structural models, we have created an online resource, covid19.bioreproducibility.org, that aggregates expert-verified information about SARS-CoV-2-related macromolecular models. In this article, we describe this web resource along with the suite of tools and methodologies used for assessing the structures presented therein.


Subject(s)
COVID-19/genetics , Internet , SARS-CoV-2/ultrastructure , Viral Proteins/ultrastructure , COVID-19/virology , Databases, Chemical , Humans , Models, Structural , Pandemics , Research , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL